
15.5:

Use the Quadratic Formula to find Real/imaginary Zeroes

Warm Up

1) Write the following as a fraction:

$$
\text { a) . } 757575 . .
$$

2) Simplify each of the following:
a) $\sqrt{-81}$
b) $5+\sqrt{-63}$
3) Simplify each power of i :
a) i^{264}
b) i^{59}
4)Simplify completely:
a) $5 i(3+2 i)$
b) $(3 i+5)(3 i-5)$

15.5: Learning Targets

- Determine the number of real/imaginary roots in a quadratic based on graph.
- Use Quadratic Formula to find the real/imaginary zeroes
- Use the discriminate to find the number of real/imaginary roots.

Solving Quadratic w/ Imaginary Zeroes

A negative inside the radical no longer means no solution! We now know that it means that there are 2 complex solutions.

$$
f(x)=x^{2}+2 x+5
$$

Determine \# of Zeroes from a Graph

Given the graph of a quadratic we can easily determine the number and type of zeroes based on the x-int.

Hits x-axis Twice

Then the quadratic will have two real solutions

Hits x-axis Once
Then the quadratic will have one real solution.

Doesn't hit x-axis
Then the quadratic has two complex solutions.

Discriminant to Determine Zeroes

Given a quadratic $\mathrm{f}(\mathrm{x})=a x^{2}+b x+c \ldots$
Discriminant $=b^{2}-4 a c$

Try it...

- $f(x)=x^{2}+4 x+8$

